المناهج التعليمية
بحث عن المثلثات المتشابهة اول ثانوي
بحث عن المثلثات المتشابهة اول ثانوي
- معلومات عن المثلثات المتشابهة اول ثانوي ستجدها في هذا المقال في موقع موسوعة، حيث سنشير إلى تعريف المثلثات المتشابهة وخصائصها الرياضية، كما سنوضح الفرق بين المثلثات المتشابهة والمثلثات المتطابقة.
- وما هي القوانين والنظريات الرياضية المتعلقة بالمثلثات، وسيستفيد من هذا المقال بشكل كبير طلاب الصف الأول الثانوي، وذلك لأن منهج الرياضيات يحتاج إلى التبسيط ويحتاج إلى أن يتم تناوله من أكثر من جهة وبأكثر من طريقة.
- والمثلثات بإختلاف أنواعها تعتبر من اهم الأشكال الهندسية التي يتم دراستها، وهناك بعض الخصائص الأساسية في كل مثلث، منها أن مجموع زواياه الداخلية يساوي 180 درجة
- ويتكون من ثلاثة أضلاع فقط، وبين كل ضلعين هناك زاوية وبهذا يتكون من ثلاثة زوايا، ولكننا سنتحدث في هذا المقال مطولًا عن نوع واحد من المثلثات، وهو المثلث المتشابهة.
كيف تكون المثلثات متشابهة
- المثلثات المتشابهة أو Triangle similarity، ويتميز هذا النوع بأن جميع الزوايا المتقابلة متساوية في المثلثات المتشابهة، فكل زاوية متساوية مع الزاوية التي تقابلها في المثلث المتشابهة، ولكن تكون أطوال الضلوع متناسبة وليست متساوية.
- وبذلك يكون التشابه بينهم في الأشكال فقط وليست في الأحجام، وإذا كانت الزوايا متساوية وطول الأضلاع متساوي أيضًا كانت المثلثات متطابقة وليست متشابهة، وهذه هي الطريقة التي يتم بها معرفة الفرق بين التشابه والتطابق.
الخصائص الهندسية للمثلثات المتشابهة
هناك عدة معايير رياضية يمكن من خلالهم التعرف على إذا كانت المثلثات متشابهة أم لا، ومن هذه المعايير:
- الزوايا المتطابقة: تتصف زوايا المثلث المتشابهة بأنها متطابقة، فكل زاويتان متقابلتنا يحملان نفس القياس.
- التناسب بين الأضلاع: كما أشرنا من قبل يجب أن تكون الأضلاع متناسبة وليست متطابقة، فيجب أن تكون الأضلاع الثلاثة متناسبة مع الأضلاع الثلاثة للمثلث الآخر.
- ضلعان والزاوية المحصورة: ويتم في هذه الطريقة الكشف عن المثلثات المتشابهة عن طريق ملاحظة قياس الزاوية المحصورة ما بين ضلعين، فإذا تساوت الزاوية المحصورة ما بين ضلعين مع نظيرتها، وتناسب طول الضلعين المحاصرين لها، فهذا يشير إلى أن كل الزوايا متطابقة وأن كل الأضلاع متناسبة، إذا حينها يكون هناك تشابه بين المثلثات.
- النظر للزاوية الحادة في المثلث القائم: إذا كان قياس أي زاوية من زوايا المثلث 90 درجة يكون مثلث قائم الزاوية، ويتم الكشف عن تشابه المثلثات قائمة الزاوية إذا تساوى قياس أي زاوية حادة من زواياه مع مثلث قائم آخر.
- الكشف عن سيقان المثلث القائم: إذا كانت سيقان المثلثات القائمة الزاوية متناسبة، فهذا يعني أن الزوايا متشابهة والمثلثات متشابهة.
- قياس نسبة الوتر والساق للمثلث القائم: يجب أن تتساوي النسبة بين الأوتار المتناظرة مع الساق المتناظرة لكي تتشابه المثلثات.
طرق معرفة المثلثات المتشابهة
من طرق ومعايير الكشف عن المثلثات المتشابهة:
- إذا وازى أحد المستقيمات أحد أضلاع المثلث، ونتج عن هذا التوازي قطع للضلعين الآخرين، فإذا نتج أن الأضلاع قُسمت إلى أجزاء متناسبة فهذا يعني أن المثلث ال��اتج سيكون متشابهة مع المثلث الأصلي.
- قانون مساحة المثلث هو حاصل ضرب طول نصف القاعدة في الارتفاع(½× طول القاعدة×الارتفاع)، فإذا تم أخذ مساحة مثلثين ووجدنا أن مساحتهم تتناسب مع مربع النسبة بين ضلعين، فحينها يكون المثلثين متشابهين.
بحث عن المثلثات المتشابهة اول ثانوي – مدونة المناهج السعودية