المناهج التعليمية

طريقة حساب الجذر التربيعي بدون آلة حاسبة

حساب الجذر التربيعي للأعداد الصحيحة سهل، وإذا لم يكن العدد صحيحًا، هناك عملية منطقية يمكنك اتباعها مع أي رقم لمعرفة جذره التربيعي بطريقة نظامية حتى لو لم تستخدم الآلة الحاسبة. ستحتاج إلى فهم الضرب الأساسي والجمع والقسمة أولًا.

طريقة 1 من 3:

حساب الجذر التربيعي للأعداد الصحيحة

1

احسب المربع الكامل باستخدام الضرب. العدد الخاص بالجذر التربيعي هو العدد الذي عند ضربه في نفسه فإنه يساوي الرقم الأصلي؛ بطريقة أبسط يمكننا استخدام السؤال: “ما العدد الذي يمكننا ضربه في نفسه للحصول على العدد المعني؟”

  • على سبيل المثال: الجذر التربيعي لرقم 1 هو 1 لأن 1 مضروب في 1 يساوي 1 (1×1 = 1)، لكن الجذر التربيعي لـ 4 هو 2 لأن 2 مضروبة في 2 تساوي 4 (2×2 = 4). فكر في مفهوم الجذر التربيعي عن طريق تخيل شجرة، إذا فكرنا مثلًا في شجرة تنمو من ثمرة البلوط، نجد أنها أكبر من الثمرة نفسها، لكنها تظل مرتبطة بجذورها. في المثال أعلاه، 4 هي الشجرة، و2 هي جوزة البلوط.
  • بالتالي يكون الجذر التربيعي لـ 9 هو 3 (3×3 = 9)، والجذر من 16 هو 4 (4×4 = 16)، ومن 25 هو 5 (5×5 = 25)، ومن 36 هو 6 (6×6 = 36)، ومن 49 هو 7 (7×7 = 49) ومن 64 هو 8 (8×8 = 64)، ومن 81 هو 9 (9×9 = 81)، ومن 100 هو 10 (10×10 = 100).
2

استخدم القسمة لإيجاد الجذر التربيعي. طريقة أخرى لإيجاد الجذر التربيعي لعدد صحيح، هي من خلال تقسيم العدد الصحيح على أرقام مختلفة إلى أن تحصل على إجابة مماثلة للرقم الذي استخدمته لتقسيم الرقم الصحيح.

  • على سبيل المثال: 16 على 4 يساوي 4، وقسمة 4 على 2 تساوي 2، وهكذا. بالتالي فإن الجذور التربيعية في هذه الأمثلة هي 4 بالنسبة لـ 16، و2 للـ 4.
  • لا تحتوي الجذور المربعة الكاملة على كسور أو كسور عشرية لأنها تتضمن أعدادًا صحيحة.
3

استخدم الرموز الصحيحة للجذر التربيعي. في الرياضيات يُستَخدم الرمز الخاص بالجذر مع هذا النوع من الأرقام، وشكله شبيه بعلامة صح يمتد من جزئها العلوي خط نحو اليمين.

  • “ن” هو الرمز الذي نستخدمه للرقم المطلوب إيجاد الجذر التربيعي له، ويُكتب داخل الرمز الشبيه بعلامة الصح.
  • بالتالي، إذا كنت تحاول إيجاد الجذر التربيعي لـ 9، فيجب عليك كتابة مسألة تضع بها “ن” (9) بداخل رمز علامة الصح (“الجذر”) ثم تضع علامة يساوي بينها وبين الناتج 3. تُقرأ: “الجذر التربيعي لـ 9 يساوي 3”.
طريقة 2 من 3:

إيجاد الجذر التربيعي لأعداد أخرى

1

خمن الناتج واستخدم عملية حذف المتشابه. تصبح معرفة الجذور المربعة أصعب عندما يكون المربع غير كامل وبالتالي ناتجه عدد غير صحيح، لكنها ممكنة من خلال الطريقة التالية:

  • لنقُل أنك تريد إيجاد الجذر التربيعي لـ 20. تعرف أن 16 هو عدد صحيح له مربع كامل هو 4 (4×4 = 16)، و25 كذلك جذره التربيعي هو 5 (5×5 = 25)، لذلك يجب أن يقع الجذر التربيعي لـ 20 بينهما.
  • يمكنك تخمين أن الجذر التربيعي لـ 20 هو 4.5. الآن، جرب تربيع 4.5 للتحقق من تخمينك، وذلك من خلال ضربها بنفسها: 4.5×4.5. حدد ما إذا كان الجواب أكبر أو أصغر من 20، إذا وجدت التخمين بعيدًا، جرب ببساطة تخمينًا آخر (ربما 4.6 أو 4.4) وعدّل تخمينك حتى تصل إلى 20.
  • على سبيل المثال: 4.5×4.5 = 20.25، لذلك من المنطقي أن تجرب عددًا أصغر، ربما 4.4: 4.4×4.4 = 19.36، بالتالي لابد وأن الجذر التربيعي لـ 20 يقع بين 4.5 و4.4، فلنجرب 4.445×4.445، نجد أنها تساوي 19.758، وهو ناتج أقرب. إذا واصلت تجربة أرقام مختلفة باستخدام هذه العملية، فستصل في النهاية للناتج 4.475×4.475 = 20.03. تقريب هذا الناتج هو 20.
  1. استخدم عملية المتوسط الحسابي. تبدأ هذه العملية أيضًا بمحاولة إيجاد أقرب الأعداد الصحيحة التي يقع رقمك في نطاقها.

    • بعد ذلك قسّم رقمك على أحد أعداد الجذور التربيعية هذه. خذ الإجابة، واحسب المتوسط الحسابي لها وللرقم الذي قسمته (المتوسط هو مجموع هذين الرقمين مقسومًا على اثنين). ثم اقسم الرقم الأصلي على المتوسط الذي وجدته. أخيرًا، ابحث عن متوسط الإجابة مع المتوسط الأول الذي حصلت عليه.
    • تبدو عملية معقدة؟ ستكون أوضح إذا طبقناها على مثال: أعداد المربعات الكاملة التي تقع 10 بينهما هي 9 (3×3 = 9) و16 (4×4 = 16). الجذر التربيعي لهذه الأرقام هو 3 و4، لذلك قسّم 10 على الرقم الأول (3). ستجد الناتج 3.33. الآن، أوجد متوسط 3 و3.33 عن طريق جمعهما ثم قسمتهما على 2. الناتج هو 3.1667. الآن اقسم 10 على 3.1667، الجواب هو 3.1579. الآن، احسب متوسط 3.1579 و3.1667 عن طريق جمعهما وقسمة ناتجهما على اثنين، ستجد الناتج 3.1623.
    • راجع إجابتك من خلال ضربها في نفسها، نجد أن الإجابة صحيحة لأن 3.1623 مضروبة في 3.1623 تساوي 10.001.
طريقة 3 من 3:

تربيع الأعداد السالبة

1

ربّع الأعداد السالبة باستخدام العملية نفسها. تذكر أن ضرب سالب في سالب يساوي موجب، بالتالي فإن تربيع رقم سالب ينتج عنه رقمًا موجبًا.

  • على سبيل المثال: -5×-5 = 25. تذكر أيضًا أن 5×5 = 25، لذلك الجذر التربيعي لـ 25 يمكن أن يكون إما -5 أو 5. هناك جذران مربعان للرقم.
  • وبالمثل، 3×3 = 9 و-3×-3 = 9، بالتالي فإن الجذر التربيعي لـ 9 هو 3 و-3 في نفس الوقت. يُعرف الرقم الموجب باسم “الجذر الرئيسي”، لذلك فهو في الحقيقة الإجابة الوحيدة التي تحتاجها عند هذه المرحلة.
  1. استخدم الآلة الحاسبة في النهاية. من الجيد فهم كيفية إجراء العمليات الحسابية بنفسك، لكن هناك العديد من الآلات الحاسبة المتاحة على الإنترنت التي تحسب الجذر التربيعي بدقة.

    • ابحث عن رمز الجذر التربيعي في آلة حاسبة تقليدية أيضًا.
    • سوف تطلب منك الآلات الحاسبة على الإنترنت إدخال الرقم الذي تريد معرفة الجذر التربيعي له والضغط على زر، ثم يجد لك الكمبيوتر الجذر التربيعي لهذا الرقم.

أفكار مفيدة

  • من المفيد للغاية أن تحفظ المربعات الكاملة الأولى:
    • 02 = 0، 12 = 1، 32 = 9، 42 = 16، 52 = 25، 62 = 36، 72 = 49، 82 = 64، 92 = 81، 102 = 100،
    • تعلم بعد ذلك مربعات الأعداد التالية: 112 = 121، 122 = 144، 132 169، 142 = 196، 152 = 225، 162 = 256، 172 = 289…
    • وهذه مربعات أخرى سهلة ومسلية: 102 = 100، 202 = 400، 302 = 900، 402 = 1600، 502 = 2500، …

طريقة حساب الجذر التربيعي بدون آلة حاسبة – مدونة المناهج السعودية

مقالات ذات صلة

زر الذهاب إلى الأعلى

أنت تستخدم إضافة Adblock

برجاء دعمنا عن طريق تعطيل إضافة Adblock